Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
2.
Microbes Infect ; 25(4): 105103, 2023 05.
Article in English | MEDLINE | ID: covidwho-2181623

ABSTRACT

B-cell depleting therapies result in diminished humoral immunity following vaccination against COVID-19, but our understanding on the impact on cellular immune responses is limited. Here, we performed a detailed analysis of cellular immunity following mRNA vaccination in patients receiving B-cell depleting therapy using ELISpot assay and flow cytometry. Anti-SARS-CoV-2 spike receptor-binding domain antibody assays were performed to elucidate B-cell responses. To complement our cellular analysis, we performed immunophenotyping for T- and B-cell subsets. We show that SARS-CoV-2 vaccination using mRNA vaccines elicits cellular T-cell responses in patients under B-cell depleting therapy. Some facets of this immune response including TNFα production of CD4+ T-cells and granzyme B production of CD8+ T-cells, however, are distinctly diminished in these patients. Consequently, it appears that the finely coordinated process of T-cell activation with a uniform involvement of CD4+ and CD8+ T-cells as seen in HCs is disturbed in autoimmune patients. In addition, we observed that immune cell composition does impact cellular immunity as well as sustainability of anti-spike antibody titers. Our data suggest disturbed cellular immunity following mRNA vaccination in patients treated with B-cell depleting therapy. Immune cell composition may be an important determinant for vaccination efficacy.


Subject(s)
Autoimmunity , COVID-19 , Humans , SARS-CoV-2 , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , Immunity, Cellular , Antibodies, Viral , Vaccination
3.
Diabetes Obes Metab ; 24(5): 849-858, 2022 05.
Article in English | MEDLINE | ID: covidwho-1608037

ABSTRACT

AIMS: To investigate the seroconversion following first and second COVID-19 vaccination in people with type 1 and type 2 diabetes in relation to glycaemic control prior to vaccination and to analyse the response in comparison to individuals without diabetes. MATERIALS AND METHODS: This prospective, multicentre cohort study analysed people with type 1 and type 2 diabetes and a glycated haemoglobin level ≤58 mmol/mol (7.5%) or >58 mmol/mol (7.5%), respectively, and healthy controls. Roche's Elecsys anti-SARS-CoV-2 S immunoassay targeting the receptor-binding domain was used to quantify anti-spike protein antibodies 7 to 14 days after the first and 14 to 21 days after the second vaccination. RESULTS: A total of 86 healthy controls were enrolled in the study, as well as 161 participants with diabetes, of whom 150 (75 with type 1 diabetes and 75 with type 2 diabetes) were eligible for the analysis. After the first vaccination, only 52.7% of participants in the type 1 diabetes group and 48.0% of those in the type 2 diabetes group showed antibody levels above the cut-off for positivity. Antibody levels after the second vaccination were similar in participants with type 1 diabetes, participants with type 2 diabetes and healthy controls after adjusting for age, sex and multiple testing (P > 0.05). Age (r = -0.45, P < 0.001) and glomerular filtration rate (r = 0.28, P = 0.001) were significantly associated with antibody response. CONCLUSIONS: Anti-SARS-CoV-2 S receptor-binding domain antibody levels after the second vaccination were comparable in healthy controls and in participants with type 1 and type 2 diabetes, irrespective of glycaemic control. Age and renal function correlated significantly with the extent of antibody levels.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Cohort Studies , Diabetes Mellitus, Type 2/complications , Humans , Immunity, Humoral , Prospective Studies , Vaccination
4.
Front Immunol ; 12: 803742, 2021.
Article in English | MEDLINE | ID: covidwho-1581314

ABSTRACT

Immunocompromised patients are considered high-risk and prioritized for vaccination against COVID-19. We aimed to analyze B-cell subsets in these patients to identify potential predictors of humoral vaccination response. Patients (n=120) suffering from hematologic malignancies or other causes of immunodeficiency and healthy controls (n=79) received a full vaccination series with an mRNA vaccine. B-cell subsets were analyzed prior to vaccination. Two independent anti-SARS-CoV-2 immunoassays targeting the receptor-binding domain (RBD) or trimeric S protein (TSP) were performed three to four weeks after the second vaccination. Seroconversion occurred in 100% of healthy controls, in contrast to 67% (RBD) and 82% (TSP) of immunocompromised patients, while only 32% (RBD) and 22% (TSP) achieved antibody levels comparable to those of healthy controls. The number of circulating CD19+IgD+CD27- naïve B cells was strongly associated with antibody levels (ρ=0.761, P<0.001) and the only independent predictor for achieving antibody levels comparable to healthy controls (OR 1.07 per 10-µL increase, 95%CI 1.02-1.12, P=0.009). Receiver operating characteristic analysis identified a cut-off at ≥61 naïve B cells per µl to discriminate between patients with and without an optimal antibody response. Consequently, measuring of naïve B cells in immunocompromised hematologic patients could be useful in predicting their humoral vaccination response.


Subject(s)
B-Lymphocyte Subsets/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunocompromised Host/immunology , Immunogenicity, Vaccine/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology
5.
Front Cardiovasc Med ; 8: 750887, 2021.
Article in English | MEDLINE | ID: covidwho-1497033

ABSTRACT

Background: Rising data suggest that COVID-19 affects vascular endothelium while the underlying mechanisms promoting COVID-19-associated endothelial dysfunction and inflammatory vasculopathy are largely unknown. The aim was to evaluate the contribution of COVID-19 to persisting vascular injury and to identify parameters linked to COVID-19-associated endothelial dysfunction and inflammatory vasculopathy. Methods: In a cross-sectional design, flow-mediated dilation (FMD), nitroglycerine-related dilation (NMD), pulse-wave velocity (PWV), augmentation index, intima-media thickness (IMT), compounds of the arginine and kynurenine metabolism, homocysteine, von Willebrand factor (vWF), endothelial microparticles (EMP), antiendothelial cell antibodies, inflammatory, and immunological parameters, as well as nailfold capillary morphology were measured in post-COVID-19 patients, patients with atherosclerotic cardiovascular diseases (ASCVD) and healthy controls without prior or recent SARS-CoV-2 infection. Results: Post-COVID-19 patients had higher values of PWV, augmentation index, IMT, asymmetric and symmetric dimethylarginine, vWF, homocysteine, CD31+/CD42b- EMP, C-reactive protein, erythrocyte sedimentation rate, interleukin-6, and ß-2-glycoprotein antibodies as well as lower levels of homoarginine and tryptophan compared to healthy controls (all with p < 0.05). A higher total number of pathologically altered inflammatory conditions and higher rates of capillary ramifications, loss, caliber variability, elongations and bushy capillaries with an overall higher microangiopathy evolution score were also observed in post-COVID-19 patients (all with p < 0.05). Most parameters of endothelial dysfunction and inflammation were comparably altered in post-COVID-19 patients and patients with ASCVD, including FMD and NMD. Conclusion: COVID-19 may affect arterial stiffness, capillary morphology, EMP and selected parameters of arginine, kynurenine and homocysteine metabolism as well as of inflammation contributing to COVID-19-associated endothelial dysfunction and inflammatory vasculopathy.

6.
Crit Care ; 25(1): 335, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1412565

ABSTRACT

BACKGROUND: Coronavirus disease 19 (COVID-19)-associated pulmonary aspergillosis (CAPA) emerged as important fungal complications in patients with COVID-19-associated severe acute respiratory failure (ARF). Whether mould active antifungal prophylaxis (MAFP) can prevent CAPA remains elusive so far. METHODS: In this observational study, we included all consecutive patients admitted to intensive care units with COVID-19-associated ARF between September 1, 2020, and May 1, 2021. We compared patients with versus without antifungal prophylaxis with respect to CAPA incidence (primary outcome) and mortality (secondary outcome). Propensity score adjustment was performed to account for any imbalances in baseline characteristics. CAPA cases were classified according to European Confederation of Medical Mycology (ECMM)/International Society of Human and Animal Mycoses (ISHAM) consensus criteria. RESULTS: We included 132 patients, of whom 75 (57%) received antifungal prophylaxis (98% posaconazole). Ten CAPA cases were diagnosed, after a median of 6 days following ICU admission. Of those, 9 CAPA cases were recorded in the non-prophylaxis group and one in the prophylaxis group, respectively. However, no difference in 30-day ICU mortality could be observed. Thirty-day CAPA incidence estimates were 1.4% (95% CI 0.2-9.7) in the MAFP group and 17.5% (95% CI 9.6-31.4) in the group without MAFP (p = 0.002). The respective subdistributional hazard ratio (sHR) for CAPA incidence comparing the MAFP versus no MAFP group was of 0.08 (95% CI 0.01-0.63; p = 0.017). CONCLUSION: In ICU patients with COVID-19 ARF, antifungal prophylaxis was associated with significantly reduced CAPA incidence, but this did not translate into improved survival. Randomized controlled trials are warranted to evaluate the efficacy and safety of MAFP with respect to CAPA incidence and clinical outcomes.


Subject(s)
Antifungal Agents/therapeutic use , COVID-19/complications , Pulmonary Aspergillosis/prevention & control , Aged , COVID-19/mortality , Critical Illness , Female , Humans , Intensive Care Units , Male , Middle Aged , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/mortality , Triazoles/therapeutic use
7.
Ann Intensive Care ; 11(1): 73, 2021 May 12.
Article in English | MEDLINE | ID: covidwho-1225785

ABSTRACT

BACKGROUND: This study aimed to quantify the potential survival benefit of convalescent plasma therapy (CVP) in critically ill patients with acute respiratory failure related to coronavirus disease-2019 (COVID-19). METHODS: This is a single-center prospective observational cohort study in COVID-19 patients with acute respiratory failure. Immediately after intensive care unit (ICU) admission patients were allocated to CVP treatment following pre-specified criteria to rapidly identify those patients potentially susceptible for this treatment. A propensity score adjustment [inverse probability of treatment weighted (IPTW) analysis] was implemented to account rigorously for imbalances in prognostic variables between the treatment groups. RESULTS: We included 120 patients of whom 48 received CVP. Thirty percent were female with a median age of 66 years [25th-75th percentile 54-75]. Eighty-eight percent of patients presented with severe acute respiratory failure as displayed by a median paO2/FiO2 ratio (Horowitz Index) of 92 [77-150]. All patients required any kind of ventilatory support with more than half of them (52%) receiving invasive ventilation. Thirty-day ICU overall survival (OS) was 69% in the CVP group and 54% in the non-CVP group (log-rank p = 0.049), respectively. After weighing the time-to-event data for the IPTW, the favorable association between CVP and OS became even stronger (log-rank p = 0.035). Moreover, an exploratory analysis showed an overall survival benefit of CVP therapy for patients with non-invasive ventilation (Hazard ratio 0.12 95% CI 0.03-0.57, p = 0.007) CONCLUSION: Administration of CVP in patients with acute respiratory failure related to COVID-19 is associated with improved ICU survival rates.

8.
J Immunol ; 206(7): 1478-1482, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1073559

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has become pandemic. Cytokine release syndrome occurring in a minority of SARS-CoV-2 infections is associated with severe disease and high mortality. We profiled the composition, activation, and proliferation of T cells in 20 patients with severe or critical COVID-19 and 40 matched healthy controls by flow cytometry. Unsupervised hierarchical cluster analysis based on 18 T cell subsets resulted in separation of healthy controls and COVID-19 patients. Compared to healthy controls, patients suffering from severe and critical COVID-19 had increased frequencies of activated and proliferating CD38+Ki67+ CD4+ and CD8+ T cells, suggesting active antiviral T cell defense. Frequencies of CD38+Ki67+ Th1 and CD4+ cells correlated negatively with plasma IL-6. Thus, our data suggest that patients suffering from COVID-19 have a distinct T cell composition that is potentially modulated by IL-6.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunity, Cellular , SARS-CoV-2/immunology , Th1 Cells/immunology , ADP-ribosyl Cyclase 1/immunology , Adult , CD8-Positive T-Lymphocytes/pathology , COVID-19/epidemiology , COVID-19/pathology , Female , Humans , Immunophenotyping , Interleukin-6/immunology , Ki-67 Antigen/immunology , Male , Membrane Glycoproteins/immunology , Pandemics , Retrospective Studies , Th1 Cells/pathology
9.
Front Med (Lausanne) ; 7: 562142, 2020.
Article in English | MEDLINE | ID: covidwho-902411

ABSTRACT

In December 2019, a cluster of severe pneumonia was observed in China, with the subsequent discovery of a new beta-coronavirus (SARS-CoV-2) as the causative agent. The elicited disease COVID-19 is characterized by fever, dry cough, myalgia, or fatigue and has a favorable outcome in the majority of cases. However, in some patients COVID-19 leads to severe pneumonia and sepsis with subsequent respiratory failure and gastrointestinal, hematological, neurological, and cardiovascular complications. A higher risk of infection is intrinsic to active rheumatic and musculoskeletal diseases (RMD) and the use of biological disease modifying anti-rheumatic drugs (DMARDs). With an increasing number of reports on COVID-19 in RMD patients, we are beginning to appraise their risks. In this review, we summarize the published cases of COVID-19 infections in RMD patients, including patients with inflammatory arthritis and connective tissue diseases as well as anti-phospholipid syndrome and Kawasaki syndrome. Overall, patients with inflammatory arthritis do not seem to be at a higher risk for infection or a severe course of COVID-19. Risk for critical COVID-19 in patients with systemic inflammatory diseases such as SLE or vasculitis might be increased, but this needs further confirmation. Furthermore, we summarize the data on DMARDs used to fight SARS-CoV-2 infection and hyperinflammation.

SELECTION OF CITATIONS
SEARCH DETAIL